19 research outputs found

    Data sharing in DHT based P2P systems

    Get PDF
    International audienceThe evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the "extreme" characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases forproviding data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identies important future research trends in data management in P2P DHT systems

    À propos de deux observations d'helminthoses hépatiques sur des marmottes,

    No full text
    Deux autopsies de marmottes américaines, Marmota monax, servant de modèle expérimental d'hépatite virale, ont permis l'identification de deux parasites à localisation hépatique, Taenia mustelae (larvae) (Cestoda : Taeniidae), et Calodium hepaticum (Nematoda : Enoplida : Capillariinae). Les auteurs présentent l'identification de ces parasites, basée sur l'observation des cysticerques dans le cas de Taenia mustelae, et sur celle des œufs dans le cas de l'infestation par C. hepaticum. Le problème de l'inter-action possible entre l'infestation parasitaire à localisation hépatique et l'infection virale par le Woodchuck Hepatitis Virus reste posé

    Maternally transferred antibodies from DNA-immunized avians protect offspring against hepadnavirus infection.

    No full text
    The outcome and protective efficacy of maternal antibodies elicited by DNA immunization to the large (L) hepadnavirus envelope protein were studied using the duck hepatitis B virus (DHBV) model. Following genetic immunization of breeding ducks with a DHBV L protein gene-bearing plasmid, specific and highly neutralizing antibodies were transferred from the sera of immunized ducks, via the egg yolk, to the progeny of vaccinees. Interestingly, large amounts (60 to 100 mg/egg) of high-titer and L protein-specific yolk immunoglobulins (immunoglobulin Y) accumulated in the egg yolk. These results suggest that eggs from genetically immunized avians may represent a potent source of DNA-designed antibodies specific to viral antigen. Importantly, these antibodies are vertically transmitted and protect offspring against high-titer DHBV challenge

    Early life humoral response of ducks to DNA immunization against hepadnavirus large envelope protein.

    No full text
    DNA vaccination may represent an interesting strategy for early life immunization. However, in some cases, this approach has been shown to induce a tolerance rather than immunity. We have compared the efficiency of neonatal DNA or protein immunization against hepadnavirus envelope protein using the duck hepatitis B virus (DHBV) model. Three-day-old ducklings were immunized with either a plasmid encoding the DHBV pre-S/S large envelope protein (L), or a recombinant preS protein, followed by sequential DNA or protein boosts at weeks 4 and 15. Our results showed that genetic immunization of duck neonates induced specific humoral response to DHBV L protein. Interestingly, an enhanced antibody response was elicited when animals received DNA priming-DNA boosting as compared to DNA priming-protein boosting

    Protective and therapeutic effect of DNA-based immunization against hepadnavirus large envelope protein.

    No full text
    BACKGROUND and AIMS: Studies in the murine model suggest that injection of DNA encoding hepatitis B virus structural proteins is promising for the induction of a specific immune response. We used the duck hepatitis B virus (DHBV) model to study the protective and therapeutic effects of naked DNA immunization against hepadnaviral large envelope protein. METHODS: A pCI-preS/S plasmid expressing the DHBV large protein was used for intramuscular immunization of ducks. The humoral response was tested by enzyme-linked immunosorbent assay, immunoblotting, neutralization, and in vivo protection tests. For DNA therapy, DHBV-carrier ducks received four injections of this plasmid. Viremia was monitored for 10 months; thereafter, liver biopsies were performed. RESULTS: Immunization with pCI-preS/S plasmid induced a specific, long-lasting, neutralizing, and highly protective anti-preS humoral response in uninfected animals. After pCI-preS/S treatment, a significant and sustained decrease in serum and liver DHBV DNA was observed for carrier ducks compared with the controls. CONCLUSIONS: DNA immunization against DHBV large protein results in a potent and protective anti-preS response in the duck model. The results of long-term follow-up of DNA-treated chronically infected ducks are promising and show the usefulness of this model for the study of genetic immunization in chronic hepatitis B therapy

    Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication

    No full text
    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (ε). This anti-ε PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates

    Effect of a Combination of Clevudine and Emtricitabine with Adenovirus-Mediated Delivery of Gamma Interferon in the Woodchuck Model of Hepatitis B Virus Infection

    No full text
    Our aim was to evaluate the antiviral effect of a combination of two nucleoside reverse transcriptase inhibitors, emtricitabine (FTC) and clevudine (L-FMAU), with the addition of an adenovirus-driven delivery of recombinant gamma interferon (IFN-γ) in the woodchuck model of hepatitis B virus infection. Six woodchuck hepatitis virus (WHV)-infected woodchucks received L-FMAU (10 mg/kg) plus FTC (30 mg/kg) intraperitoneally for 8 weeks; six other animals received in addition an intravenous injection of a recombinant adenovirus vector expressing woodchuck IFN-γ (Ad-IFN) at weeks 4 and 8. In the control group, two animals received Ad-IFN alone, two received adenovirus vector expressing the green fluorescent protein reporter gene, and one remained untreated. In less than 2 weeks, all woodchucks that received L-FMAU plus FTC showed a rapid and marked inhibition of viral replication, with a 4-log(10) drop in serum WHV DNA. In two animals, viremia remained suppressed for several months after the end of treatment. Similarly, a dramatic decrease in intrahepatic replicative intermediates of viral DNA was observed in the L-FMAU/FTC-treated groups. The additional administration of Ad-IFN led to increased inflammation in the liver but did not enhance the antiviral effect of the L-FMAU/FTC combination. In conclusion, therapies combining L-FMAU and FTC in WHV-infected woodchucks resulted in a potent and sustained antihepadnaviral effect both in the liver and in the blood circulation. However, no extra benefit of adding IFN-γ gene transduction to the L-FMAU/FTC combination could be detected
    corecore